En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q92 20 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of extended graphons, introduced in Jabin-Poyato-Soler, by introducing a novel notion of discrete observables in the system. This is a joint work with D. Zhou.[-]
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of ...[+]

35Q49 ; 35Q83 ; 35R02 ; 35Q70 ; 05C90 ; 60G09 ; 35R06 ; 35Q89 ; 35Q92 ; 49N80 ; 92B20 ; 65N75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We provide an asymptotic analysis of a nonlinear integro-differential equation which describes the evolutionary dynamics of a population which reproduces sexually and which is subject to selection and competition. The sexual reproduction is modeled via a nonlinear integral term, known as the 'infinitesimal model'. We consider a regime of small segregational variance, where a parameter in the infinitesimal operator, which measures the deviation between the trait of the offspring and the mean parental trait, is small. We prove that in this regime the phenotypic distribution remains close to a Gaussian profile with a fixed small variance and we characterize the dynamics of the mean phenotypic trait via an ordinary differential equation. We also briefly discuss the extension of the method to the study of steady solutions and their stability.[-]
We provide an asymptotic analysis of a nonlinear integro-differential equation which describes the evolutionary dynamics of a population which reproduces sexually and which is subject to selection and competition. The sexual reproduction is modeled via a nonlinear integral term, known as the 'infinitesimal model'. We consider a regime of small segregational variance, where a parameter in the infinitesimal operator, which measures the deviation ...[+]

35B40 ; 35Q92 ; 92D15 ; 47G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we overview some of the challenges of cardiac modeling and simulation of the electrical depolarization of the heart. In particular, we will present a strategy allowing to avoid the 3D simulation of the thin atria depolarization but only solve an asymptotic consistent model on the mid-surface. In a second part, we present a strategy for estimating a cardiac electrophysiology model from front data measurements using sequential parallel data assimilation strategy.[-]
In this talk we overview some of the challenges of cardiac modeling and simulation of the electrical depolarization of the heart. In particular, we will present a strategy allowing to avoid the 3D simulation of the thin atria depolarization but only solve an asymptotic consistent model on the mid-surface. In a second part, we present a strategy for estimating a cardiac electrophysiology model from front data measurements using sequential ...[+]

92C30 ; 35Q92 ; 65C20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Mathematical modelling of angiogenesis - Maini, Philip (Auteur de la Conférence) | CIRM H

Post-edited

Tumour vascular is highly disordered and has been the subject of intense interest both clinically (anti-angiogenesis therapies) and theoretically (many models have been proposed). In this talk, I will review aspects of modelling tumour angiogenesis and how different modelling assumptions impact conclusions on oxygen delivery and, therefore, predictions on the possible effects of radiation treatments.

93A30 ; 92C50 ; 92C37 ; 92C17 ; 65C20 ; 35Q92

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We introduce and analyze a mathematical model for the regeneration of planarian flatworms. This system of differential equations incorporates dynamics of head and tail cells which express positional control genes that in turn translate into localized signals that guide stem cell differentiation. Orientation and positional information is encoded in the dynamics of a long range wnt-related signaling gradient.
We motivate our model in relation to experimental data and demonstrate how it correctly reproduces cut and graft experiments. In particular, our system improves on previous models by preserving polarity in regeneration, over orders of magnitude in body size during cutting experiments and growth phases. Our model relies on tristability in cell density dynamics, between head, trunk, and tail. In addition, key to polarity preservation in regeneration, our system includes sensitivity of cell differentiation to gradients of wnt-related signals measured relative to the tissue surface. This process is particularly relevant in a small tissue layer close to wounds during their healing, and modeled here in a robust fashion through dynamic boundary conditions.[-]
We introduce and analyze a mathematical model for the regeneration of planarian flatworms. This system of differential equations incorporates dynamics of head and tail cells which express positional control genes that in turn translate into localized signals that guide stem cell differentiation. Orientation and positional information is encoded in the dynamics of a long range wnt-related signaling gradient.
We motivate our model in relation to ...[+]

92C15 ; 35B36 ; 35Q92 ; 37N25 ; 35K40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
At the individual scale, bacteria as E. coli move by performing so-called run-and-tumble movements. This means that they alternate a jump (run phase) followed by fast re-organization phase (tumble) in which they decide of a new direction for run. For this reason, the population is described by a kinetic-Botlzmann equation of scattering type. Nonlinearity occurs when one takes into account chemotaxis, the release by the individual cells of a chemical in the environment and response by the population.

These models can explain experimental observations, fit precise measurements and sustain various scales. They also allow to derive, in the diffusion limit, macroscopic models (at the population scale), as the Flux-Limited Keller-Segel system, in opposition to the traditional Keller-Segel system, this model can sustain robust traveling bands as observed in Adler's famous experiment.

Furthermore, the modulation of the tumbles, can be understood using intracellular molecular pathways. Then, the kinetic-Boltzmann equation can be derived with a fast reaction scale. Long runs at the individual scale and abnormal diffusion at the population scale, can also be derived mathematically.[-]
At the individual scale, bacteria as E. coli move by performing so-called run-and-tumble movements. This means that they alternate a jump (run phase) followed by fast re-organization phase (tumble) in which they decide of a new direction for run. For this reason, the population is described by a kinetic-Botlzmann equation of scattering type. Nonlinearity occurs when one takes into account chemotaxis, the release by the individual cells of a ...[+]

35B25 ; 35Q20 ; 35Q84 ; 35Q92 ; 92C17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Collective movement - course 1 - Calvez, Vincent (Auteur de la Conférence) | CIRM H

Multi angle

I present an overview of mathematical modeling of self-organization and wave propagation in some micro-organisms. The course is structured around several case studies, focussing on explicit computations of traveling waves in structured PDE. The course begins with an introductory seminar-like lecture by Tâm Mignot about self-organization processes in myxobacteria.

35A18 ; 35A24 ; 35A30 ; 35B40 ; 35B50 ; 35C06 ; 35C07 ; 35D40 ; 35F21 ; 35K15 ; 35K57 ; 35Q92 ; 49L25 ; 92D15 ; 92D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Collective movement - course 3 - Calvez, Vincent (Auteur de la Conférence) | CIRM H

Multi angle

I present an overview of mathematical modeling of self-organization and wave propagation in some micro-organisms. The course is structured around several case studies, focussing on explicit computations of traveling waves in structured PDE. The course begins with an introductory seminar-like lecture by Tâm Mignot about self-organization processes in myxobacteria.

35A24 ; 35A30 ; 35B40 ; 35B50 ; 35K15 ; 35K57 ; 49L25 ; 92D15 ; 92D40 ; 35A18 ; 35F21 ; 35Q92 ; 35C06 ; 35D40 ; 35C07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Exponent dynamics for branching processes - Méléard, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

We consider a stochastic model for the evolution of a discrete population structured by a trait taking finitely many values on a grid of [0, 1], with mutation and selection. We study of the dynamics of the population in logarithm size and time scales, under a large population assumption. In the first part of the talk, individual mutations are rare but the global mutation rate tends to infinity. Then negligible sub-populations may have a strong contribution to evolution. The traits can also be horizontally transferred, leading to a trade-off between natural evolution to higher birth rates and transfer which drives the population towards lower birth rates. We prove that the stochastic discrete exponent process converges to a piecewise affine continuous function, which can be described along successive phases determined by dominant traits. In the second part of the talk, the individual mutations are small but not rare, we don't have any transfer and we assume the grid mesh for the trait values becoming smaller and smaller. We establish that under our rescaling, the stochastic discrete exponent process converges to the viscosity solution of a Hamilton-Jacobi equation, filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations.
Joint works with N. Champagnat and V.C. Tran, and S. Mirrahimi for the second part.[-]
We consider a stochastic model for the evolution of a discrete population structured by a trait taking finitely many values on a grid of [0, 1], with mutation and selection. We study of the dynamics of the population in logarithm size and time scales, under a large population assumption. In the first part of the talk, individual mutations are rare but the global mutation rate tends to infinity. Then negligible sub-populations may have a strong ...[+]

92D25 ; 60J85 ; 35Q92

Sélection Signaler une erreur