En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35D35 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present the global solvability of the primitive equations for the atmosphere coupled to moisture dynamics with phase changes for warm clouds, where water is present in the form of water vapor and in the liquid state as cloud water and rain water. This moisture model, which has been used by Klein–Majda in [1] and corresponds to a basic form of the bulk microphysics closure in the spirit of Kessler [2] and Grabowski–Smolarkiewicz [3], contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. The moisture balances are strongly coupled to the thermodynamic equation via the latent heat associated to the phase changes. The global well-posedness was proved by combining the technique used in Hittmeir–Klein–Li–Titi [4], where global well-posedness was established for the pure moisture system for given velocity, and the ideas of Cao–Titi [5], who succeeded in proving the global solvability of the primitive equations without coupling to the moisture.[-]
In this talk, I will present the global solvability of the primitive equations for the atmosphere coupled to moisture dynamics with phase changes for warm clouds, where water is present in the form of water vapor and in the liquid state as cloud water and rain water. This moisture model, which has been used by Klein–Majda in [1] and corresponds to a basic form of the bulk microphysics closure in the spirit of Kessler [2] and Grabowski–S...[+]

35A01 ; 35B45 ; 35D35 ; 35M86 ; 35Q30 ; 35Q35 ; 35Q86 ; 76D03 ; 76D09

Sélection Signaler une erreur