En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46E36 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Sobolev spaces on metric spaces - Kigami, Jun (Auteur de la Conférence) | CIRM H

Multi angle

Traditionally, theories of “Sobolev” spaces on metric spaces have used local Lipschitz constants as a substitute for the gradient of functions. However, a recent study by Kajino and Murugan revealed that such an idea does not work for a class of self-similar sets including the planar Sierpinski carpet. The notion of conductive homogeneity was proposed to construct a counterpart of Sobolev spaces and Sobolev p-energy even for such cases. In this talk, I will review the method of construction of Sobolev spaces under the conductive homogeneity and give a class of regular polygon-based self-similar sets having the conductive homogeneity. Our condition is the local symmetry of the space with some (or no) global symmetry. In particular, we show that any locally symmetric triangle-based self-similar sets possess the conductive homogeneity. This is joint work with Y. Ota.[-]
Traditionally, theories of “Sobolev” spaces on metric spaces have used local Lipschitz constants as a substitute for the gradient of functions. However, a recent study by Kajino and Murugan revealed that such an idea does not work for a class of self-similar sets including the planar Sierpinski carpet. The notion of conductive homogeneity was proposed to construct a counterpart of Sobolev spaces and Sobolev p-energy even for such cases. In this ...[+]

46E36

Sélection Signaler une erreur