En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Deshouillers, Jean-Marc 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
T.C. Brown and A.R. Freedman proved that the set $\mathcal{P}_{2}$ of products of two primes contains no dense cluster; technically, $\mathcal{P}_{2}$ has a zero upper Banach density, defined as $\delta^{*}(\mathcal{P}_{2}) =\lim_{H\mapsto \infty} \limsup_{x\mapsto \infty} \frac{1}{H} Card \{n\in \mathcal{P}_{2}:x< n\leq x+H\}$.
Pramod Eyyunni, Sanoli Gun and I jointly studied the local behaviour of the product of two shifted primes $\mathcal{Q}_{2}=\{(q-1)(r-1):q,r \, primes\}$. Assuming a classical conjecture of Dickson, we proved that $\delta^{*}(\mathcal{Q}_{2}) = 1/6$. Notice that we know no un-conditional proof that $\delta^{*}(\mathcal{Q}_{2})$ is positive. The application, which was indeed our motivation, concerns the study of the local behaviour of the set $\mathcal{V}$ of values of Euler's totient function. Assuming Dickson's conjecture, we prove that $\delta^{*}(\mathcal{V})\geq 1/4$. The converse inequality $\delta^{*}(\mathcal{V})\leq 1/4$ had been proved in the previous millenium by K. Ford, S. Konyagin and C. Pomerance.[-]
T.C. Brown and A.R. Freedman proved that the set $\mathcal{P}_{2}$ of products of two primes contains no dense cluster; technically, $\mathcal{P}_{2}$ has a zero upper Banach density, defined as $\delta^{*}(\mathcal{P}_{2}) =\lim_{H\mapsto \infty} \limsup_{x\mapsto \infty} \frac{1}{H} Card \{n\in \mathcal{P}_{2}:x< n\leq x+H\}$.
Pramod Eyyunni, Sanoli Gun and I jointly studied the local behaviour of the product of two shifted primes $\m...[+]

11B83 ; 11B05 ; 11N32 ; 11N64

Bookmarks Report an error