En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

2016 - Sem 2 - Lemanczyk - Ferenczi 15 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Primes with missing digits - ... (Author of the conference) | H

Multi angle

We will talk about recent work showing there are infinitely many primes with no $7$ in their decimal expansion. (And similarly with $7$ replaced by any other digit.) This shows the existence of primes in a 'thin' set of numbers (sets which contain at most $X^{1-c}$ elements less than $X$) which is typically vey difficult.
The proof relies on a fun mixture of tools including Fourier analysis, Markov chains, Diophantine approximation, combinatorial geometry as well as tools from analytic number theory.[-]
We will talk about recent work showing there are infinitely many primes with no $7$ in their decimal expansion. (And similarly with $7$ replaced by any other digit.) This shows the existence of primes in a 'thin' set of numbers (sets which contain at most $X^{1-c}$ elements less than $X$) which is typically vey difficult.
The proof relies on a fun mixture of tools including Fourier analysis, Markov chains, Diophantine approximation, com...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups[-]
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Integral points on Markoff type cubic surfaces and dynamics - ... (Author of the conference) | H

Post-edited

Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the corresponding nonlinear group of morphims of affine three space.[-]
Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the ...[+]

Bookmarks Report an error