En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 4 résultats

Filtrer
Sélectionner : Tous / Aucun
P Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A$\infty$- categories - Bocklandt, Rafael (Auteur de la conférence) | CIRM H

Multi angle

In this lecture series we will explore how one can use quivers and A∞-algebras to construct combinatorial models for Fukaya categories. We will illustrate this with explicit examples in dimensions 1, 2 and 3.

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Realization spaces of polytopes and oriented matroids - Padrol, Arnau (Auteur de la conférence) | CIRM H

Multi angle

This is the second lecture on a mini-course on polytopal realizations of combinatorial structures. We discuss realization spaces of polytopes and oriented matroids and Mnëv's universality theorem, showing that it is hard to decide if a given poset is the face lattice of a convex polytope.

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Exact $\infty$-categories - Jasso, Gustavo (Auteur de la conférence) | CIRM H

Multi angle

Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact infinity-categories, relying on the newly-developed theory of infinity-categories developed by Joyal, Lurie and others. This new class of mathematical objects includes not only the exact categories in the sense of Quillen but also the stable inftinty-categories in the sense of Lurie (the latter are to be regarded as refinements of triangulated categories in the sense of Verdier). The purpose of this lecture series is to motivate the theory of exact infinity-categories and sketch some of its applications. Familiarity with the theory of infinity-categories is not expected.[-]
Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact ...[+]

18N60 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give an introduction to the amplituhedron, a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in the context of scattering amplitudes in N=4 super Yang Mills theory. I will focus in particular on its connections to cluster algebras, including the cluster adjacency conjecture. (Based on joint works with multiple coauthors, especially Evan-Zohar, Lakrec, Parisi, Sherman-Bennett, and Tessler.)[-]
I will give an introduction to the amplituhedron, a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in the context of scattering amplitudes in N=4 super Yang Mills theory. I will focus in particular on its connections to cluster algebras, including the cluster adjacency conjecture. (Based on joint works with multiple coauthors, especially Evan-Zohar, Lakrec, Parisi, Sherman-Bennett, and ...[+]

05Exx ; 13F60 ; 14M15

Sélection Signaler une erreur