En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 5 results

Filter
Select: All / None
P Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean Field Games - lecture 1 - Cardaliaguet, Pierre (Author of the conference) | CIRM H

Multi angle

The lecture is a short presentation of the theory of Mean Field Games (MFG) and Mean Field Control (MFC). After explaining how to derive these models from optimal control problems and games with a large number of players, we will describe the basic results of MFG (existence, uniqueness of the solution) and MFC, writing in the later case the associated infinite dimensional Hamilton-Jacobi equation and the optimality conditions.

35Q89 ; 49J55 ; 49K20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 1 - Possamaï, Dylan (Author of the conference) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

93E20 ; 91B41

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mean Field Games - lecture 2 - Cardaliaguet, Pierre (Author of the conference) | CIRM H

Multi angle

The lecture is a short presentation of the theory of Mean Field Games (MFG) and Mean Field Control (MFC). After explaining how to derive these models from optimal control problems and games with a large number of players, we will describe the basic results of MFG (existence, uniqueness of the solution) and MFC, writing in the later case the associated infinite dimensional Hamilton-Jacobi equation and the optimality conditions.

35Q89 ; 93E20 ; 49K20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 2 - Possamaï, Dylan (Author of the conference) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

91B41 ; 93E20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Principal Agent Modelling - lecture 3 - Possamaï, Dylan (Author of the conference) | CIRM H

Multi angle

These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If time permit, we will also analyze the situation of a Principal hiring a finite number of Agents who can interact with each other, as well as the associated mean-field problem. The theory will be mostly illustrated by examples ranging from finance and insurance applications to regulation issues.[-]
These lectures will consist in an overview of recent progresses made in contracting theory, using the so-called dynamic programming approach. The basic situation is that of a Principal wanting to hire an Agent to do a task on his behalf, and who has to be properly incentivized. We will show how this general framework allows to treat volatility control problems arising for instance in delegated portfolio management, or in electricity pricing. If ...[+]

91B41 ; 93E20

Bookmarks Report an error