En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Seip, Kristian 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that the norm of the backward shift operator on $H^1$ is $\frac{2}{\sqrt{3}}$, and we identify the functions for which the norm is attainedJoint work with Ole Fredrik Brevig.

30H10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give a survey of the operator theory that is currently evolving on Hardy spaces of Dirichlet series. We will consider recent results about multiplicative Hankel operators as introduced and studied by Helson and developments building on the Gordon-Hedenmalm theorem on bounded composition operators on the $H^2$ space of Dirichlet series.

47B35 ; 30B50 ; 30H10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We describe the idempotent Fourier multipliers that act contractively on $H^{p}$ spaces of the $d$-dimensional torus $\mathbb{T}^{d}$ for $d \geq 1$ and $1 \leq p \leq \infty$. When $p$ is not an even integer, such multipliers are just restrictions of contractive idempotent multipliers on $L^{p}$ spaces, which in turn can be described by suitably combining results of Rudin and Andô. When $p=2(n+1)$, with $n$ a positive integer, contractivity depends in an interesting geometric way on $n, d$, and the dimension of the set of frequencies associated with the multiplier. Our results allow us to construct a linear operator that is densely defined on $H^{p}\left(\mathbb{T}^{\infty}\right)$ for every $1 \leq p \leq \infty$ and that extends to a bounded operator if and only if $p=2,4, \ldots, 2(n+1)$. The talk is based on joint work with Ole Fredrik Brevig and Joaquim Ortega-Cerdà.[-]
We describe the idempotent Fourier multipliers that act contractively on $H^{p}$ spaces of the $d$-dimensional torus $\mathbb{T}^{d}$ for $d \geq 1$ and $1 \leq p \leq \infty$. When $p$ is not an even integer, such multipliers are just restrictions of contractive idempotent multipliers on $L^{p}$ spaces, which in turn can be described by suitably combining results of Rudin and Andô. When $p=2(n+1)$, with $n$ a positive integer, contractivity ...[+]

42B30 ; 30H10 ; 42A45 ; 42B15

Bookmarks Report an error