Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We will explain how to use a variant of Deligne's skeleton conjecture in characteristic 0 to prove the existence of an algebraic variety parametrizing Stokes torsors. We will show how the geometry of this moduli can be used to prove new finiteness results on differential equations.
[-]
In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We ...
[+]
32C38 ; 14F10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated categories of regular holonomic D-modules and of constructible sheaves. In a joint work with Masaki Kashiwara, we proved a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and is influenced by Tamarkin's work on symplectic topology. Among the main ingredients of our proof is the description of the structure of flat meromorphic connections due to Mochizuki and Kedlaya.
[-]
The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated categories of regular holonomic D-modules and of constructible sheaves. In a joint work with Masaki Kashiwara, we proved a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and is influenced by Tamarkin's work on ...
[+]
32C38 ; 32S60 ; 34M40 ; 35Q15 ; 35A27