En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 62F10 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the problem of estimating the mean vector of the multivariate complex normaldistribution with unknown covariance matrix under an invariant loss function when the samplesize is smaller than the dimension of the mean vector. Following the approach of Chételat and Wells (2012, Ann.Statist, p. 3137–3160), we show that a modification of Baranchik-tpye estimatorsbeats the MLE if it satisfies certain conditions. Based on this result, we propose the James-Stein-like shrinkage and its positive-part estimators.[-]
We consider the problem of estimating the mean vector of the multivariate complex normaldistribution with unknown covariance matrix under an invariant loss function when the samplesize is smaller than the dimension of the mean vector. Following the approach of Chételat and Wells (2012, Ann.Statist, p. 3137–3160), we show that a modification of Baranchik-tpye estimatorsbeats the MLE if it satisfies certain conditions. Based on this result, we ...[+]

62F10 ; 62C20 ; 62H12

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In time series analysis there is an apparent dichotomy between time and frequency domain methods. The aim of this paper is to draw connections between frequency and time domain methods. Our focus will be on reconciling the Gaussia likelihood and the Whittle likelihood. We derive an exact, interpretable, bound between the Gaussian and Whittle likelihood of a second order stationary time series. The derivation is based on obtaining the transformation which is biorthogonal to the discrete Fourier transform of the time series. Such a transformation yields a new decomposition for the inverse of a Toeplitz matrix and enables the representation of the Gaussian likelihood within the frequency domain. We show that the difference between the Gaussian and Whittle likelihood is due to the omission of the best linear predictions outside the domain of observation in the periodogram associated with the Whittle likelihood. Based on this result, we obtain an approximation for the difference between the Gaussian and Whittle likelihoods in terms of the best fitting, finite order autoregressive parameters. These approximations are used to define two new frequency domain quasi-likelihoods criteria. We show these new criteria yield a better approximation of the spectral divergence criterion, as compared to both the Gaussian and Whittle likelihoods. In simulations, we show that the proposed estimators have satisfactory finite sample properties.[-]
In time series analysis there is an apparent dichotomy between time and frequency domain methods. The aim of this paper is to draw connections between frequency and time domain methods. Our focus will be on reconciling the Gaussia likelihood and the Whittle likelihood. We derive an exact, interpretable, bound between the Gaussian and Whittle likelihood of a second order stationary time series. The derivation is based on obtaining the tr...[+]

62M10 ; 62M15 ; 62F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Tensor PCA - Ben Arous, Gérard (Author of the conference) | CIRM H

Multi angle

I will survey here the recent rich line of works on the statistical problem of Tensor PCA. How hard is it to denoise a (small-rank) tensor in high dimension? I will discuss the natural thresholds obtained from the point of view of Information Theory, Statistics and Optimization.

62F10

Bookmarks Report an error