Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Uncertainty quantification (UQ) in the context of engineering applications aims aims at quantifying the effects of uncertainty in the input parameters of complex models on their output responses. Due to the increased availability of computational power and advanced modelling techniques, current simulation tools can provide unprecedented insight in the behaviour of complex systems. However, the associated computational costs have also increased significantly, often hindering the applicability of standard UQ techniques based on Monte-Carlo sampling. To overcome this limitation, metamodels (also referred to as surrogate models) have become a staple tool in the Engineering UQ community. This lecture will introduce a general framework for dealing with uncertainty in the presence of expensive computational models, in particular for reliability analysis (also known as rare event estimation). Reliability analysis focuses on the tail behaviour of a stochastic model response, so as to compute the probability of exceedance of a given performance measure, that would result in a critical failure of the system under study. Classical approximation-based techniques, as well as their modern metamodel-based counter-parts will be introduced.
[-]
Uncertainty quantification (UQ) in the context of engineering applications aims aims at quantifying the effects of uncertainty in the input parameters of complex models on their output responses. Due to the increased availability of computational power and advanced modelling techniques, current simulation tools can provide unprecedented insight in the behaviour of complex systems. However, the associated computational costs have also increased ...
[+]
62P30 ; 65C05 ; 90B25 ; 62N05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Anomaly detection in random fields is an important problem in many applications including the detection of cancerous cells in medicine, obstacles in autonomous driving and cracks in the construction material of buildings. Scan statistics have the potential to detect local structure in such data sets by enhancing relevant features. Frequently, such anomalies are visible as areas with different expected values compared to the background noise where the geometric properties of these areas may depend on the type of anomaly. Such geometric properties can be taken into account by combinations and contrasts of sample means over differently-shaped local windows. For example, in 2D image data of concrete both cracks, which we aim to detect, as well as integral parts of the material (such as air bubbles or gravel) constitute areas with different expected values in the image. Nevertheless, due to their different geometric properties we can define scan statistics that enhance cracks and at the same time discard the integral parts of the given concrete. Cracks can then be detected using asuitable threshold for appropriate scan statistics. 9 In order to derive such thresholds, we prove weak convergence of the scan statistics towards a functional of a Gaussian process under the null hypothesis of no anomalies. The result allows for arbitrary (but fixed) dimension, makes relatively weak assumptions on the underlying noise, the shape of the local windows and the combination of finitely-many of such windows. These theoretical findings are accompanied by some simulations as well as applications to semi-artifical 2D-images of concrete.
[-]
Anomaly detection in random fields is an important problem in many applications including the detection of cancerous cells in medicine, obstacles in autonomous driving and cracks in the construction material of buildings. Scan statistics have the potential to detect local structure in such data sets by enhancing relevant features. Frequently, such anomalies are visible as areas with different expected values compared to the background noise ...
[+]
62M40 ; 62P30 ; 60G60
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Modern machine learning architectures often embed their inputs into a lower-dimensional latent space before generating a final output. A vast set of empirical results---and some emerging theory---predicts that these lower-dimensional codes often are highly structured, capturing lower-dimensional variation in the data. Based on this observation, in this talk I will describe efforts in my group to develop lightweight algorithms that navigate, restructure, and reshape learned latent spaces. Along the way, I will consider a variety of practical problems in machine learning, including low-rank adaptation of large models, regularization to promote local latent structure, and efficient training/evaluation of generative models.
[-]
Modern machine learning architectures often embed their inputs into a lower-dimensional latent space before generating a final output. A vast set of empirical results---and some emerging theory---predicts that these lower-dimensional codes often are highly structured, capturing lower-dimensional variation in the data. Based on this observation, in this talk I will describe efforts in my group to develop lightweight algorithms that navigate, ...
[+]
62E20 ; 62F99 ; 62G07 ; 62P30 ; 65C50 ; 68T99