En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Ueltschi, Daniel 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences.[-]
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences.[-]
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences.[-]
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...[+]

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences.[-]
These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...[+]

Bookmarks Report an error