En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Xie, Junyi 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Complexity theory in arithmetic dynamical systems - Lecture 1 - Xie, Junyi (Author of the conference) | CIRM H

Virtualconference

It is a fundamental problem to measure the complexity of a dynamical system. In this lecture, we discuss this problem for arithmetic dynamics in terms of topology, algebra and arithmetic. In particular, the notion of dynamical degrees, which can be viewed as an algebraic analogy of “entropy”, plays a key role. We will see how it applies to study the orbits, periodic points and action of cohomologies.

14-XX ; 37-XX ; 11-XX

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Complexity theory in arithmetic dynamical systems - Lecture 3 - Xie, Junyi (Author of the conference) | CIRM H

Virtualconference

It is a fundamental problem to measure the complexity of a dynamical system. In this lecture, we discuss this problem for arithmetic dynamics in terms of topology, algebra and arithmetic. In particular, the notion of dynamical degrees, which can be viewed as an algebraic analogy of “entropy”, plays a key role. We will see how it applies to study the orbits, periodic points and action of cohomologies.

14-XX ; 37-XX ; 11-XX

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Complexity theory in arithmetic dynamical systems - Lecture 2 - Xie, Junyi (Author of the conference) | CIRM H

Virtualconference

It is a fundamental problem to measure the complexity of a dynamical system. In this lecture, we discuss this problem for arithmetic dynamics in terms of topology, algebra and arithmetic. In particular, the notion of dynamical degrees, which can be viewed as an algebraic analogy of “entropy”, plays a key role. We will see how it applies to study the orbits, periodic points and action of cohomologies.

14-XX ; 37-XX ; 11-XX

Bookmarks Report an error