En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Huber-Klawitter, Annette 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my talk, I will discuss an application of the theory of motives to transcendence theory, concentrating on the formal aspects. The Period Conjecture predicts that all relations between period numbers are induced by properties of the category of motives. It is a theorem for motives of points and curves, but wide open in general. The Period Conjecture also implies fullness of the Hodge-de Rham realization on Nori motives. If time permits, I will discuss how this generalizes (conjecturally) to triangulated motives and thus to motivic cohomology.[-]
In my talk, I will discuss an application of the theory of motives to transcendence theory, concentrating on the formal aspects. The Period Conjecture predicts that all relations between period numbers are induced by properties of the category of motives. It is a theorem for motives of points and curves, but wide open in general. The Period Conjecture also implies fullness of the Hodge-de Rham realization on Nori motives. If time permits, I will ...[+]

14F42

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Periods of $1$-motives - Huber-Klawitter, Annette (Author of the conference) | CIRM H

Multi angle

(joint work with G. Wüstholz) Roughly, $1$-dimensional periods are the complex numbers obtained by integrating a differential form on an algebraic curve over $\bar{\mathbf{Q}}$ over a suitable domain of integration. One of the alternative characterisations is as periods of Deligne $1$-motives.
We clear up the linear relations between these numbers, proving Kontsevich's version of the period conjecture for $1$-dimensional periods. In particular, a $1$-dimensional period is shown to be algebraic if and only if it is of the form $\int_\gamma (\phi+df)$ with $\int_\gamma\phi=0$. We also get formulas for the spaces of periods of a given $1$-motive, generalising Baker's theorem on logarithms of algebraic numbers.
The proof is based on a version of Wüstholz's analytic subgroup theorem for $1$-motives.[-]
(joint work with G. Wüstholz) Roughly, $1$-dimensional periods are the complex numbers obtained by integrating a differential form on an algebraic curve over $\bar{\mathbf{Q}}$ over a suitable domain of integration. One of the alternative characterisations is as periods of Deligne $1$-motives.
We clear up the linear relations between these numbers, proving Kontsevich's version of the period conjecture for $1$-dimensional periods. In particular, ...[+]

14F42 ; 19E15 ; 19F27

Bookmarks Report an error