En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Stevens, Sophie 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An update on the sum-product problem in $\mathbb{R}$ - Stevens, Sophie (Author of the conference) | CIRM H

Virtualconference

Discussing recent work joint with M. Rudnev [2], I will discuss the modern approach to the sum-product problem in the reals. Our approach builds upon and simplifies the arguments of Shkredov and Konyagin [1], and in doing so yields a new best result towards the problem. We prove that
$max(\left | A+A \right |,\left | A+A \right |)\geq \left | A \right |^{\frac{4}{3}+\frac{2}{1167}-o^{(1)}}$ , for a finite $A\subset \mathbb{R}$. At the heart of our argument are quantitative forms of the two slogans ‘multiplicative structure of a set gives additive information', and ‘every set has a multiplicatively structured subset'.[-]
Discussing recent work joint with M. Rudnev [2], I will discuss the modern approach to the sum-product problem in the reals. Our approach builds upon and simplifies the arguments of Shkredov and Konyagin [1], and in doing so yields a new best result towards the problem. We prove that
$max(\left | A+A \right |,\left | A+A \right |)\geq \left | A \right |^{\frac{4}{3}+\frac{2}{1167}-o^{(1)}}$ , for a finite $A\subset \mathbb{R}$. At the heart of ...[+]

11N99 ; 11F99 ; 11B75 ; 11B30 ; 05D10

Bookmarks Report an error