En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Bogdanov, Konstantin 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In complex dynamics it is usually important to understand the dynamical behavior of critical (or singular) orbits. For quadratic polynomials, this leads to the study of the Mandelbrot set and of its complement. In our talk we present a classification of some explicit families of the transcendental entire functions for which all singular values escape, i.e. functions belonging to the complement of the 'transcendental analogue' of the Mandelbrot set. This classification allows us to introduce higher dimensional analogues of parameter rays and to explore their properties. A key ingredient is a generalization of the famous Thurston's Topological Characterization of Rational Functions, but for the case of infinite rather than finite postsingular set. Analogously to Thurston's theorem, we consider the sigma-iteration on the Teichmüller space and investigate its convergence. Unlike the classical case, the underlying Teichmüller space is infinite-dimensional which leads to a completely different theory.[-]
In complex dynamics it is usually important to understand the dynamical behavior of critical (or singular) orbits. For quadratic polynomials, this leads to the study of the Mandelbrot set and of its complement. In our talk we present a classification of some explicit families of the transcendental entire functions for which all singular values escape, i.e. functions belonging to the complement of the 'transcendental analogue' of the Mandelbrot ...[+]

37F20 ; 37F34

Bookmarks Report an error