En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Louf, Baptiste 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we consider two models of random geometry of surfaces in high genus: combinatorial maps and hyperbolic surfaces. The geometric properties of random hyperbolic surfaces under the Weil–Petersson measure as the genus tends to infinity have been studied for around 15 years now, building notably on enumerative results of Mirzakhani. On the other hand, random combinatorial maps were first studied in the planar/finite genus case, and then in the high genus regime starting 10 years ago with unicellular (i.e. one-faced) maps. In a joint work with Svante Janson, we noticed some numerical coincidence regarding the counting of short closed curves in unicellular maps/hyperbolic surfaces in high genus (comparing it to results of Mirzakhani and Petri). This leads us to conjecture some similarities between the two models in the limit, and raises several other open questions.[-]
In this talk, we consider two models of random geometry of surfaces in high genus: combinatorial maps and hyperbolic surfaces. The geometric properties of random hyperbolic surfaces under the Weil–Petersson measure as the genus tends to infinity have been studied for around 15 years now, building notably on enumerative results of Mirzakhani. On the other hand, random combinatorial maps were first studied in the planar/finite genus case, and then in ...[+]

05C10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the 'high genus regime', where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate.
We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) in unicellular maps (maps with one face), thanks to a powerful bijection of Chapuy, Féray and Fusy.
The interest of this work is that we obtain exactly the same law as Mirzakhani and Petri who counted closed geodesics on a model of random hyperbolic surfaces in large genus (the Weil- Petersson measure). This leads us to conjecture that these two models are somehow 'the same' in the limit.[-]
In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the 'high genus regime', where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate.
We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) ...[+]

05C10 ; 05C80 ; 60C05 ; 60D05

Bookmarks Report an error