Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
We present a mathematically rigorous justification of the Local Density Approximation in density functional theory. We provide a quantitative estimate on the difference between the grand-canonical Levy-Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the Uniform Electron Gas energy of this density. The error involves gradient terms and justifies the use of the Local Density Approximation in situations where the density is very flat on sufficiently large regions in space. (Joint work with Mathieu Lewin and Elliott Lieb)
[-]
We present a mathematically rigorous justification of the Local Density Approximation in density functional theory. We provide a quantitative estimate on the difference between the grand-canonical Levy-Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the Uniform Electron Gas energy of this density. The error involves gradient terms and justifies the use of the ...
[+]
82B03 ; 81V70 ; 49K21
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins $S= 1/2$. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. The proof combines a bosonic representation of the model introduced by Holstein and Primakoff with probabilistic estimates, localization bounds and functional inequalities.
Joint work with Michele Correggi and Alessandro Giuliani
[-]
We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins $S= 1/2$. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. The proof combines a bosonic representation of the model introduced by Holstein and Primakoff with probabilistic estimates, localization bounds and functional ...
[+]
82D05 ; 82D40 ; 82D45 ; 82B10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.