En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Oxley, James G. 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A matroid extension result - Oxley, James G. (Auteur de la conférence) | CIRM H

Multi angle

Let $(A,B)$ be a $3$-separation in a matroid $M$. If $M$ is representable, then, in the underlying projective space, there is a line where the subspaces spanned by $A$ and $B$ meet, and $M$ can be extended by adding elements from this line. In general, Geelen, Gerards, and Whittle proved that $M$ can be extended by an independent set $\{p,q\}$ such that $\{p,q\}$ is in the closure of each of $A$ and $B$. In this extension, each of $p$ and $q$ is freely placed on the line $L$ spanned by $\{p,q\}$. This talk will discuss a result that gives necessary and sufficient conditions under which a fixed element can be placed on $L$.[-]
Let $(A,B)$ be a $3$-separation in a matroid $M$. If $M$ is representable, then, in the underlying projective space, there is a line where the subspaces spanned by $A$ and $B$ meet, and $M$ can be extended by adding elements from this line. In general, Geelen, Gerards, and Whittle proved that $M$ can be extended by an independent set $\{p,q\}$ such that $\{p,q\}$ is in the closure of each of $A$ and $B$. In this extension, each of $p$ and $q$ is ...[+]

05B35

Sélection Signaler une erreur