En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14E07 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Periods of polarized hyperkähler manifolds​ - Debarre, Olivier (Auteur de la conférence) | CIRM H

Post-edited

Hyperkähler manifolds are higher-dimensional analogs of K3 surfaces. Verbitsky and Markmann recently proved that their period map is an open embedding. In a joint work with E. Macri, we explicitly determine the image of this map in some cases. I will explain this result together with a nice application (found by Bayer and Mongardi) to the (almost complete) determination of the image of the period map for cubic fourfolds, hereby partially recovering a result of Laza.[-]
Hyperkähler manifolds are higher-dimensional analogs of K3 surfaces. Verbitsky and Markmann recently proved that their period map is an open embedding. In a joint work with E. Macri, we explicitly determine the image of this map in some cases. I will explain this result together with a nice application (found by Bayer and Mongardi) to the (almost complete) determination of the image of the period map for cubic fourfolds, hereby partially ...[+]

14C34 ; 14E07 ; 14J50 ; 14J60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Signature morphisms from the Cremona group - Zimmermann, Susanna (Auteur de la conférence) | CIRM H

Multi angle

The plane Cremona group is the group of birational transformations of the projective plane. I would like to discuss why over algebraically closed fields there are no homomorphisms from the plane Cremona group to a finite group, but for certain non-closed fields there are (in fact there are many). This is joint work with Stéphane Lamy.

14E07 ; 14E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Action of the Cremona group on a CAT(0) cube complex - Lonjou, Anne (Auteur de la conférence) | CIRM H

Virtualconference

The Cremona group is the group of birational transformations of the projective plane. Even if this group comes from algebraic geometry, tools from geometric group theory have been powerful to study it. In this talk, based on a joint work with Christian Urech, we will build a natural action of the Cremona group on a CAT(0) cube complex. We will then explain how we can obtain new and old group theoretical and dynamical results on the Cremona group.

14E07 ; 20F65 ; 20F67

Sélection Signaler une erreur