En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 15A15 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Here, we provide a generic version of quantum Wielandt's inequality, which gives an optimal upper bound on the minimal length such that products of that length of n-dimensional matrices in a generating system span the whole matrix algebra with probability one. This length generically is of order $\Theta(\log n)$, as opposed to the general case, in which the best bound is $O(n^2)$.  This has implications for the primitivity index of random quantum channels, matrix product states and projected entangled pair states. Some results can be extended to Lie algebras. Joint work with Yifan Jia.[-]
Here, we provide a generic version of quantum Wielandt's inequality, which gives an optimal upper bound on the minimal length such that products of that length of n-dimensional matrices in a generating system span the whole matrix algebra with probability one. This length generically is of order $\Theta(\log n)$, as opposed to the general case, in which the best bound is $O(n^2)$.  This has implications for the primitivity index of random ...[+]

15A90 ; 15A15 ; 17B45

Sélection Signaler une erreur