En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 26Cxx 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Poincaré-Reeb graphs of real algebraic domains - Sorea, Miruna-Stefana (Auteur de la conférence) | CIRM H

Multi angle

A real algebraic domain is a closed topological subsurface of a real affine plane such that its boundary consists of disjoint smooth connected components of real algebraic plane curves. Our goal is to study the nonconvexity of real algebraic domains relative to the vertical direction. To this end, we collapse all vertical segments contained in the algebraic domain, yielding a Poincar´e–Reeb graph which is naturally transversal to the foliation by vertical lines. Our main result is the following: any transversal graph whose vertices have only valencies 1 and 3 and are situated on distinct vertical lines arises up to isomorphism as a Poincar´e–Reeb graph of a real algebraic domain. We also give a purely topological description of the setting in which our construction of Poincar´e–Reeb graphs may be applied, with no differentiability assumptions. This is a joint work with Arnaud Bodin and Patrick Popescu-Pampu (Université de Lille, France).[-]
A real algebraic domain is a closed topological subsurface of a real affine plane such that its boundary consists of disjoint smooth connected components of real algebraic plane curves. Our goal is to study the nonconvexity of real algebraic domains relative to the vertical direction. To this end, we collapse all vertical segments contained in the algebraic domain, yielding a Poincar´e–Reeb graph which is naturally transversal to the foliation ...[+]

58K05 ; 05E14 ; 14P25 ; 26Cxx

Sélection Signaler une erreur