En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 65M32 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bayesian methods for inverse problems - lecture 2 - Dashti, Masoumeh (Auteur de la conférence) | CIRM H

Virtualconference

We consider the inverse problem of recovering an unknown parameter from a finite set of indirect measurements. We start with reviewing the formulation of the Bayesian approach to inverse problems. In this approach the data and the unknown parameter are modelled as random variables, the distribution of the data is given and the unknown is assumed to be drawn from a given prior distribution. The solution, called the posterior distribution, is the probability distribution of the unknown given the data, obtained through the Bayes rule. We will talk about the conditions under which this formulation leads to well-posedness of the inverse problem at the level of probability distributions. We then discuss the connection of the Bayesian approach to inverse problems with the variational regularization. This will also help us to study the properties of the modes of the posterior distribution as point estimators for the unknown parameter. We will also briefly talk about the Markov chain Monte Carlo methods in this context.[-]
We consider the inverse problem of recovering an unknown parameter from a finite set of indirect measurements. We start with reviewing the formulation of the Bayesian approach to inverse problems. In this approach the data and the unknown parameter are modelled as random variables, the distribution of the data is given and the unknown is assumed to be drawn from a given prior distribution. The solution, called the posterior distribution, is the ...[+]

35R30 ; 65M32 ; 65M12 ; 65C05 ; 65C50 ; 76D07 ; 60J10

Sélection Signaler une erreur