En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Díaz, Rafael 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Deformations of $N$-differential graded algebras - Díaz, Rafael (Auteur de la conférence) | CIRM

Multi angle

We introduce the concept of N-differential graded algebras ($N$-dga), and study the moduli space of deformations of the differential of a $N$-dga. We prove that it is controlled by what we call the $N$-Maurer-Cartan equation. We provide geometric examples such as the algebra of differential forms of depth $N$ on an affine manifold, and $N$-flat covariant derivatives. We also consider deformations of the differential of a $q$-differential graded algebra. We prove that it is controlled by a generalized Maurer-Cartan equation. We find explicit formulae for the coefficients involved in that equation. Deformations of the $3$-differential of $3$-differential graded algebras are controlled by the $(3,N)$ Maurer-Cartan equation. We find explicit formulae for the coefficients appearing in that equation, introduce new geometric examples of $N$-differential graded algebras, and use these results to study $N$-Lie algebroids. We study higher depth algebras, and work towards the construction of the concept of $A^N_ \infty$-algebras.[-]
We introduce the concept of N-differential graded algebras ($N$-dga), and study the moduli space of deformations of the differential of a $N$-dga. We prove that it is controlled by what we call the $N$-Maurer-Cartan equation. We provide geometric examples such as the algebra of differential forms of depth $N$ on an affine manifold, and $N$-flat covariant derivatives. We also consider deformations of the differential of a $q$-differential graded ...[+]

16E45 ; 53B50 ; 81R10 ; 16S80 ; 58B32

Sélection Signaler une erreur