Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We say that a real closed field is an IPA-real closed field if it admits an integer part (IP) which is a model of Peano Arithmetic (PA). In [2] we prove that the value group of an IPA-real closed field must satisfy very restrictive conditions (i.e. must be an exponential group in the residue field, in the sense of [4]). Combined with the main result of [1] on recursively saturated real closed fields, we obtain a valuation theoretic characterization of countable IPA-real closed fields. Expanding on [3], we conclude the talk by considering recursively saturated o-minimal expansions of real closed fields and their IPs.
[-]
We say that a real closed field is an IPA-real closed field if it admits an integer part (IP) which is a model of Peano Arithmetic (PA). In [2] we prove that the value group of an IPA-real closed field must satisfy very restrictive conditions (i.e. must be an exponential group in the residue field, in the sense of [4]). Combined with the main result of [1] on recursively saturated real closed fields, we obtain a valuation theoretic char...
[+]
06A05 ; 12J10 ; 12J15 ; 12L12 ; 13A18