En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46E30 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Ideals in $L(L_p)$ - Johnson, William B. (Auteur de la Conférence) | CIRM H

Multi angle

I'll discuss the Banach algebra structure of the spaces of bounded linear operators on $\ell_p$ and $L_p$ := $L_p(0, 1)$. The main new results are
1. The only non trivial closed ideal in $L(L_p)$, 1 $\leq$ p < $\infty$, that has a left approximate identity is the ideal of compact operators (joint with N. C. Phillips and G. Schechtman).
2. There are infinitely many; in fact, a continuum; of closed ideals in $L(L_1)$ (joint with G. Pisier and G. Schechtman).
The second result answers a question from the 1978 book of A. Pietsch, “Operator ideals”.[-]
I'll discuss the Banach algebra structure of the spaces of bounded linear operators on $\ell_p$ and $L_p$ := $L_p(0, 1)$. The main new results are
1. The only non trivial closed ideal in $L(L_p)$, 1 $\leq$ p < $\infty$, that has a left approximate identity is the ideal of compact operators (joint with N. C. Phillips and G. Schechtman).
2. There are infinitely many; in fact, a continuum; of closed ideals in $L(L_1)$ (joint with G. Pisier and G. ...[+]

47L10 ; 47B10 ; 46E30

Sélection Signaler une erreur