En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 55P43 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The chromatic Nullstellensatz - Burklund, Robert (Auteur de la Conférence) | CIRM H

Multi angle

Hilbert's Nullstellensatz is a fundamental result in commutative algebra which is the starting point for classical algebraic geometry. In this talk, I will discuss a version of Hilbert's Nullstellensatz in chromatic homotopy theory, where Lubin-Tate theories play the role of algebraically closed fields. Time permitting, I will then indicate some of the applications of the chromatic nullstellensatz including to redshift for the algebraic K-theory of commutative algebras. This is joint work with Tomer Schlank and Allen Yuan.[-]
Hilbert's Nullstellensatz is a fundamental result in commutative algebra which is the starting point for classical algebraic geometry. In this talk, I will discuss a version of Hilbert's Nullstellensatz in chromatic homotopy theory, where Lubin-Tate theories play the role of algebraically closed fields. Time permitting, I will then indicate some of the applications of the chromatic nullstellensatz including to redshift for the algebraic K-theory ...[+]

55P43 ; 19D99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Prismatic and syntomic cohomology of ring spectra - Hahn, Jeremy (Auteur de la Conférence) | CIRM H

Multi angle

I will explain a construction of the motivic filtration on the topological cyclic homology of ring spectra, generalizing work of Bhatt–Morrow–Scholze and Bhatt–Lurie on the topological cyclic homology of discrete rings. This is joint with Arpon Raksit and Dylan Wilson. As time permits, I will discuss works in progress using the motivic spectral sequence to obtain new calculations in algebraic $K$-theory and prove higher chromatic variants of local Tate duality.[-]
I will explain a construction of the motivic filtration on the topological cyclic homology of ring spectra, generalizing work of Bhatt–Morrow–Scholze and Bhatt–Lurie on the topological cyclic homology of discrete rings. This is joint with Arpon Raksit and Dylan Wilson. As time permits, I will discuss works in progress using the motivic spectral sequence to obtain new calculations in algebraic $K$-theory and prove higher chromatic variants of ...[+]

55P42 ; 55P43 ; 55T05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In joint work with Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver and Eva Höning, we calculate the $\bmod \left(p, v_1, v_2\right)$ homotopy $V(2)_* T C(B P\langle 2\rangle)$ of the topological cyclic homology of the truncated Brown-Peterson spectrum $B P\langle 2\rangle$, at all primes $p \geq 7$, and show that it is a finitely generated and free $\mathbb{F}_p\left[v_3\right]$-module on $12 p+4$ generators in explicit degrees within the range $-1 \leq * \leq 2 p^3+2 p^2+2 p-3$. Our computation is the first that exhibits chromatic redshift from pure $v_2$-periodicity to pure $v_3$-periodicity in a precise quantitative manner.[-]
In joint work with Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver and Eva Höning, we calculate the $\bmod \left(p, v_1, v_2\right)$ homotopy $V(2)_* T C(B P\langle 2\rangle)$ of the topological cyclic homology of the truncated Brown-Peterson spectrum $B P\langle 2\rangle$, at all primes $p \geq 7$, and show that it is a finitely generated and free $\mathbb{F}_p\left[v_3\right]$-module on $12 p+4$ generators in explicit degrees ...[+]

19D50 ; 19D55 ; 55P43 ; 55Q51

Sélection Signaler une erreur