En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 90C31 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the space highway to Lagrange points! - Trélat, Emmanuel (Auteur de la Conférence) | CIRM H

Post-edited

Everything is under control: mathematics optimize everyday life.
In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.
Control theory is a branch of mathematics that allows to control, optimize and guide systems on which one can act by means of a control, like for example a car, a robot, a space shuttle, a chemical reaction or in more general a process that one aims at steering to some desired target state.
Emmanuel Trélat will overview the range of applications of that theory through several examples, sometimes funny, but also historical. He will show you that the study of simple cases of our everyday life, far from insignificant, allow to approach problems like the orbit transfer or interplanetary mission design.[-]
Everything is under control: mathematics optimize everyday life.
In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.
Control theory is a branch of mathematics that allows to control, optimize and guide systems on ...[+]

49J15 ; 93B40 ; 93B27 ; 93B50 ; 65H20 ; 90C31 ; 37N05 ; 37N35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine learning.
imaging - image processing - sparsity - convex optimization - inverse problem - super-resolution[-]
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine ...[+]

62H35 ; 65D18 ; 94A08 ; 68U10 ; 90C31 ; 80M50 ; 47N10

Sélection Signaler une erreur