Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For large financial markets as introduced in Kramkov and Kabanov 94, there are several existing absence-of-arbitrage conditions in the literature. They all have in common that they depend in a crucial way on the discounting factor. We introduce a new concept, generalizing NAA1 (K&K 94) and NAA (Rokhlin 08), which is invariant with respect to discounting. We derive a dual characterization by a contiguity property (FTAP).We investigate connections to the in finite time horizon framework (as for example in Karatzas and Kardaras 07) and illustrate negative result by counterexamples. Based on joint work with M. Schweizer.
[-]
For large financial markets as introduced in Kramkov and Kabanov 94, there are several existing absence-of-arbitrage conditions in the literature. They all have in common that they depend in a crucial way on the discounting factor. We introduce a new concept, generalizing NAA1 (K&K 94) and NAA (Rokhlin 08), which is invariant with respect to discounting. We derive a dual characterization by a contiguity property (FTAP).We investigate connections ...
[+]
91C99 ; 91B02 ; 60G48