En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Nyssen, Louise 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we consider the limit multiplicity question (and some variants): how many automorphic forms of fixed infinity-type and level N are there as N grows? The question is well-understood when the archimedean representation is a discrete series, and we focus on non-tempered cohomological representations on unitary groups. Using an inductive argument which relies on the stabilization of the trace formula and the endoscopic classification, we give asymptotic counts of multiplicities, and prove the Sarnak-Xue conjecture at split level for (almost!) all cohomological representations of unitary groups. Additionally, for some representations, we derive an average Sato-Tate result in which the measure is the one predicted by functoriality. This is joint work with Rahul Dalal.[-]
In this talk, we consider the limit multiplicity question (and some variants): how many automorphic forms of fixed infinity-type and level N are there as N grows? The question is well-understood when the archimedean representation is a discrete series, and we focus on non-tempered cohomological representations on unitary groups. Using an inductive argument which relies on the stabilization of the trace formula and the endoscopic classification, ...[+]

11F55 ; 11F70 ; 11F72 ; 11F75 ; 22E50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In 1981, Drinfeld enumerated the number of irreducible $l$-adic local systems of rank two on a projective smooth curve fixed by the Frobenius endomorphism. Interestingly, this number looks like the number of points on a variety over a finite field. Deligne proposed conjectures to extend and comprehend Drinfeld's result. By the Langlands correspondence, it is equivalent to count certain cuspidal automorphic representations over a function field. In this talk, I will present some counting results where we connect counting to the number of stable Higgs bundles using Arthur's non-invariant trace formula.[-]
In 1981, Drinfeld enumerated the number of irreducible $l$-adic local systems of rank two on a projective smooth curve fixed by the Frobenius endomorphism. Interestingly, this number looks like the number of points on a variety over a finite field. Deligne proposed conjectures to extend and comprehend Drinfeld's result. By the Langlands correspondence, it is equivalent to count certain cuspidal automorphic representations over a function field. ...[+]

11R39 ; 14H60 ; 22E55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will first recall the general expectations of Shimura, Langlands, and Kottwtiz on the shape of the zeta function of a Shimura variety, or more generally its etale cohomology. I will then report on some recent progress which partially fulfills these expectations, for Shimura varieties of unitary groups and special orthogonal groups. Finally, I will give a preview of some foreseeable developments in the near future.

11G18 ; 14G35 ; 11G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Motives and automorphic representations - Arthur, James (Auteur de la Conférence) | CIRM H

Multi angle

Motives represent hidden building blocks for both number theory and geometry. Automorphic representations are spectral objects with the analytic power to resolve some of the deepest questions in modern harmonic analysis. It has long been thought that there were fundamental relations between these very different sides of mathematics. We shall describe conjectures on the explicit nature of some of these relations, as expressed in terms of the automorphic and motivic Galois groups. If time permits, we shall comment on how these universal groups might extend to the broader theories of mixed motives and exponential motives.[-]
Motives represent hidden building blocks for both number theory and geometry. Automorphic representations are spectral objects with the analytic power to resolve some of the deepest questions in modern harmonic analysis. It has long been thought that there were fundamental relations between these very different sides of mathematics. We shall describe conjectures on the explicit nature of some of these relations, as expressed in terms of the ...[+]

11R39 ; 22E55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will talk about my joint work with Aubert where we prove the Local Langlands Conjecture for $G_2$ (explicitly). This uses our earlier results on Hecke algebras attached to Bernstein components of (arbitrary) reductive $p$-adic groups, as well as an expected property on cuspidal support, along with a list of characterizing properties (including stability). In particular, we obtain 'mixed' L-packets containing F-singular supercuspidals and nonsupercuspidals. Our methods are inspired by the Langlands-Shahidi method, Deligne-Lusztig and Lusztig theories etc. If time permits, I will explain how to characterize our correspondence using stability of L-packets, by computing character formulae in terms of (generalized) Green functions ; one key input is a homogeneity result due to Waldspurger and DeBacker. Moreover, I will mention how to adapt our general strategy to construct LLC for other reductive groups, such as $G S p(4), S p(4)$, etc. The latter parts are based on recent joint work with Suzuki.[-]
I will talk about my joint work with Aubert where we prove the Local Langlands Conjecture for $G_2$ (explicitly). This uses our earlier results on Hecke algebras attached to Bernstein components of (arbitrary) reductive $p$-adic groups, as well as an expected property on cuspidal support, along with a list of characterizing properties (including stability). In particular, we obtain 'mixed' L-packets containing F-singular supercuspidals and ...[+]

11S37 ; 22E50 ; 20G05 ; 11F70 ; 20C08

Sélection Signaler une erreur