En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Schapira, Barbara 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we are interested in the chaotic behaviour of the geodesic flow of hyperbolic surfaces. To understand it from an ergodic point of view, we will build a family of invariant measures called "Gibbs measures", and use their product structure to deduce chaotic properties of the flow. We will also present some situations where this family of measures leads to nice geometric results.

37A10 ; 37A35 ; 37A40 ; 37B40 ; 37D35 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we are interested in the chaotic behaviour of the geodesic flow of hyperbolic surfaces. To understand it from an ergodic point of view, we will build a family of invariant measures called "Gibbs measures", and use their product structure to deduce chaotic properties of the flow. We will also present some situations where this family of measures leads to nice geometric results.

37A10 ; 37A35 ; 37A40 ; 37B40 ; 37D35 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss old and recent results on topological and measurable dynamics of diagonal and unipotent flows on frame bundles and unit tangent bundles over hyperbolic manifolds. The first lectures will be a good introduction to the subject for young researchers.

37D40 ; 37A17 ; 37A25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Horocyclic flows on hyperbolic surfaces - Part I - Schapira, Barbara (Auteur de la Conférence) | CIRM H

Post-edited

I will present results on the dynamics of horocyclic flows on the unit tangent bundle of hyperbolic surfaces, density and equidistribution properties in particular. I will focus on infinite volume hyperbolic surfaces. My aim is to show how these properties are related to dynamical properties of geodesic flows, as product structure, ergodicity, mixing, ...

37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Which geodesic flows are left-handed? - Dehornoy, Pierre (Auteur de la Conférence) | CIRM H

Post-edited

Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows are good candidates. In this conference we determine on which hyperbolic orbifolds is the geodesic flow left-handed: the answer is that yes if the surface is a sphere with three cone points, and no otherwise.
dynamical system - geodesic flow - knot - periodic orbit - global section - linking number - fibered knot[-]
Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows ...[+]

37C27 ; 37C15 ; 37C10 ; 57M25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur