En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Goldschmidt, Christina 27 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
This talk is based on a work jointly with Timothy Budd (Copenhagen), Nicolas Curien (Orsay) and Igor Kortchemski (Ecole Polytechnique).
Consider a self-similar Markov process $X$ on $[0,\infty)$ which converges at infinity a.s. We interpret $X(t)$ as the size of a typical cell at time $t$, and each negative jump as a birth event. More precisely, if ${\Delta}X(s) = -y < 0$, then $s$ is the birth at time of a daughter cell with size $y$ which then evolves independently and according to the same dynamics. In turn, daughter cells give birth to granddaughter cells each time they make a negative jump, and so on.
The genealogical structure of the cell population can be described in terms of a branching random walk, and this gives rise to remarkable martingales. We analyze traces of these mar- tingales in physical time, and point at some applications for self-similar growth-fragmentation processes and for planar random maps.[-]
This talk is based on a work jointly with Timothy Budd (Copenhagen), Nicolas Curien (Orsay) and Igor Kortchemski (Ecole Polytechnique).
Consider a self-similar Markov process $X$ on $[0,\infty)$ which converges at infinity a.s. We interpret $X(t)$ as the size of a typical cell at time $t$, and each negative jump as a birth event. More precisely, if ${\Delta}X(s) = -y < 0$, then $s$ is the birth at time of a daughter cell with size $y$ which then ...[+]

60G51 ; 60G18 ; 60J75 ; 60G44 ; 60G50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Vertex degrees in planar maps - Drmota, Michael (Author of the conference) | H

Multi angle

We consider the family of rooted planar maps $M_\Omega$ where the vertex degrees belong to a (possibly infinite) set of positive integers $\Omega$. Using a classical bijection with mobiles and some refined analytic tools in order to deal with the systems of equations that arise, we recover a universal asymptotic behavior of planar maps. Furthermore we establish that the number of vertices of a given degree satisfies a multi (or even infinitely)-dimensional central limit theorem. We also discuss some possible extension to maps of higher genus.
This is joint work with Gwendal Collet and Lukas Klausner[-]
We consider the family of rooted planar maps $M_\Omega$ where the vertex degrees belong to a (possibly infinite) set of positive integers $\Omega$. Using a classical bijection with mobiles and some refined analytic tools in order to deal with the systems of equations that arise, we recover a universal asymptotic behavior of planar maps. Furthermore we establish that the number of vertices of a given degree satisfies a multi (or even inf...[+]

05A19 ; 05A16 ; 05C10 ; 05C30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The $O(n)$ model can be formulated in terms of loops living on the lattice, with n the fugacity per loop. In two dimensions, it is known to possess a rich critical behavior, involving critical exponents varying continuously with n. In this talk, we will consider the case where the model is ”coupled to 2D quantum gravity”, namely it is defined on a random map.
It has been known since the 90's that the partition function of the model can be expressed as a matrix integral, which can be evaluated exactly in the planar limit. A few years ago, together with G. Borot and E. Guitter, we revisited the problem by a combinatorial approach, which allows to relate it to the so-called Boltzmann random maps, which have no loops but faces of arbitrary (and controlled) face degrees. In particular we established that the critical points of the $O(n)$ model are closely related to the ”stable maps” introduced by Le Gall and Miermont.
After reviewing these results, I will move on to a more recent work done in collaboration with G. Borot and B. Duplantier, where we study the nesting statistics of loops. More precisely we consider loop configurations with two marked points and study the distribution of the number of loops separating them. The associated generating function can be computed exactly and, by taking asymptotics, we show that the number of separating loops grows logarithmically with the size of the maps at a (non generic) critical point, with an explicit large deviation function. Using a continuous generalization of the KPZ relation, our results are in full agreement with those of Miller, Watson and Wilson concerning nestings in Conformal Loop Ensembles.[-]
The $O(n)$ model can be formulated in terms of loops living on the lattice, with n the fugacity per loop. In two dimensions, it is known to possess a rich critical behavior, involving critical exponents varying continuously with n. In this talk, we will consider the case where the model is ”coupled to 2D quantum gravity”, namely it is defined on a random map.
It has been known since the 90's that the partition function of the model can be ...[+]

05Axx ; 60K35 ; 81T40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The celebrated Fisher-Kolmogorov-Petrovsky-Piscounof equation (FKPP) in one dimension for
$h:\mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ is:

$\partial_th = \partial{_x^2}h + h - h^2, h(x, 0) = h_0(x)$.

This equation is a natural description of a reaction-diffusion model (Fisher 1937, Kolmogorov et al. 1937, Aronson 1978). It is also related to branching Brownian motion: for the Heaviside initial condition $h_0 (x) = 1{_x<0}$ , $h(x, t)$ is the probability that the rightmost particle at time t in a branching Brownian motion (BBM) is to the right of $x$.
One of the beauty of this equation is that for initial conditions that decrease sufficiently fast, a front develops, i.e. there exists a centring term $m(t)$ and an asymptotic shape $\omega(x)$ such that

$\lim_{t \to \infty} h(m(t) + x,t) = \omega(x) \in (0, 1).$

Since the original paper of Kolmogorov et al., the position of the front $m(t)$ has been studied intensely, in particular by Bramson. In this talk, I will present some recent results concerning a prediction of Ebert and van Saarloos about the vanishing corrections of this position.
Based on a joint work with E. Brunet.[-]
The celebrated Fisher-Kolmogorov-Petrovsky-Piscounof equation (FKPP) in one dimension for
$h:\mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ is:

$\partial_th = \partial{_x^2}h + h - h^2, h(x, 0) = h_0(x)$.

This equation is a natural description of a reaction-diffusion model (Fisher 1937, Kolmogorov et al. 1937, Aronson 1978). It is also related to branching Brownian motion: for the Heaviside initial condition $h_0 (x) = 1{_x<0}$ , $h(x, t)$ is ...[+]

60J80 ; 35K57

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Recurrence of half plane maps - Angel, Omer (Author of the conference) | H

Multi angle

On a graph $G$, we consider the bootstrap model: some vertices are infected and any vertex with 2 infected vertices becomes infected. We identify the location of the threshold for the event that the Erdos-Renyi graph $G(n, p)$ can be fully infected by a seed of only two infected vertices. Joint work with Brett Kolesnik.

05C80 ; 60K35 ; 60C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version «poissonisée» du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites «bulk» et le noyau d'Airy dans la limite «edge». In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.[-]
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...[+]

05A17 ; 05E10 ; 60C05 ; 60G55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version «poissonisée» du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites «bulk» et le noyau d'Airy dans la limite «edge». In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.[-]
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...[+]

05A17 ; 05E10 ; 60C05 ; 60G55

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Angel and Schramm ont étudié en 2003 la limite locale des triangulations uniformes. La loi limite, appelée UIPT (pour Uniform Infinite planar Triangulation) a depuis été pas mal étudiée et est plutôt bien comprise. Dans cet exposé, je vais expliquer comment on peut obtenir un résultat analogue à celui d'Angel et Schramm mais lorsque les triangulations ne sont plus uniformes mais distribuées selon un modèle d'Ising. Une partie importante de la preuve consiste à étudier une équation sur des séries génératrices à deux variables catalytiques et repose sur la méthode des invariants de Tutte (introduite par Tutte et popularisée par Bernardi et Bousquet-Mélou). L'objet limite est pour le moment très mal compris et soulève un grand nombre de questions ouvertes ![-]
Angel and Schramm ont étudié en 2003 la limite locale des triangulations uniformes. La loi limite, appelée UIPT (pour Uniform Infinite planar Triangulation) a depuis été pas mal étudiée et est plutôt bien comprise. Dans cet exposé, je vais expliquer comment on peut obtenir un résultat analogue à celui d'Angel et Schramm mais lorsque les triangulations ne sont plus uniformes mais distribuées selon un modèle d'Ising. Une partie importante de la ...[+]

05C30 ; 05C10 ; 05C81 ; 60D05 ; 60B10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans les années 1970, William Tutte développa une approche algébrique, basée sur des «invariants», pour résoudre une équation fonctionnelle qui apparait dans le dénombrement de triangulations colorées. La transformée de Laplace de la distribution stationnaire du mouvement brownien réfléchi dans des cônes satisfait une équation similaire. Pour être applicable, cette méthode requiert l'existence de deux fonctions appelées respectivement invariant et fonction de découplage. Tous les modèles ont des invariants mais on démontre que l'existence de fonctions de découplage équivaut à une condition géométrique simple sur les angles de réflexion. Pour les modèles qui ont une fonction de découplage, on obtient une expression explicite sans intégrale de la transformée de Laplace en fonction des invariants. En particulier, on obtient à nouveau une formule pour la transformée de Laplace de plusieurs cas bien connus, comme la skew symétrie, les réflexions orthogonales ou le résultat de Dieker et Moriarty qui caractérise les densités stationnaires qui s'écrivent sous la forme d'une somme d'exponentielles. Cette méthode permet de plus de caractériser la nature algébrique de la transformée de Laplace en fonction des modèles. Cet exposé est issu d'un travail en collaboration avec M. Bousquet-Mélou, A. Elvey Price, C. Hardouin et K. Raschel.[-]
Dans les années 1970, William Tutte développa une approche algébrique, basée sur des «invariants», pour résoudre une équation fonctionnelle qui apparait dans le dénombrement de triangulations colorées. La transformée de Laplace de la distribution stationnaire du mouvement brownien réfléchi dans des cônes satisfait une équation similaire. Pour être applicable, cette méthode requiert l'existence de deux fonctions appelées respectivement invariant ...[+]

60J65 ; 60E10 ; 60C05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer.
In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The fact that there exists a combinatorial critical value for this model has been initially established in the physics literature by Kazakov and was rederived by combinatorial methods by Bousquet-Mélou and Schaeffer, and Bouttier, Di Francesco and Guitter.
Here, we give geometric evidence of that this model undergoes a phase transition by studying the volume and perimeter of its monochromatic clusters. In particular, we establish that, when nu is critical or subcritical, the cluster of the root is finite almost surely, and is infinite with positive probability for nu supercritical.[-]
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer.
In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The ...[+]

05A15 ; 05A16 ; 05C12 ; 05C30 ; 60C05 ; 60D05 ; 60K35 ; 82B44

Bookmarks Report an error