En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Dehornoy, Pierre 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Contact flows and Birkhoff sections - Part 1 - Vaugon, Anne (Auteur de la Conférence) ; Dehornoy, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

This course is devoted to the interplay of several topological and dynamical notions, namely contact forms and their Reeb flows, open book decompositions, and Anosov flows. We will spend some time explaining the basic definitions and several important examples. The rough plan is (1) Contact forms, Reeb flows, and open book decomposition (2) Birkhoff sections, Anosov flows, and Reeb-Anosov flows.

53D10 ; 37C10 ; 57R65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Which geodesic flows are left-handed? - Dehornoy, Pierre (Auteur de la Conférence) | CIRM H

Post-edited

Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows are good candidates. In this conference we determine on which hyperbolic orbifolds is the geodesic flow left-handed: the answer is that yes if the surface is a sphere with three cone points, and no otherwise.
dynamical system - geodesic flow - knot - periodic orbit - global section - linking number - fibered knot[-]
Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows ...[+]

37C27 ; 37C15 ; 37C10 ; 57M25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Contact flows and Birkhoff sections - Part 2 - Vaugon, Anne (Auteur de la Conférence) ; Dehornoy, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

This course is devoted to the interplay of several topological and dynamical notions, namely contact forms and their Reeb flows, open book decompositions, and Anosov flows. We will spend some time explaining the basic definitions and several important examples. The rough plan is (1) Contact forms, Reeb flows, and open book decomposition (2) Birkhoff sections, Anosov flows, and Reeb-Anosov flows.

53D10 ; 37C10 ; 57R65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Contact flows and Birkhoff sections - Part 3 - Vaugon, Anne (Auteur de la Conférence) ; Dehornoy, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

This course is devoted to the interplay of several topological and dynamical notions, namely contact forms and their Reeb flows, open book decompositions, and Anosov flows. We will spend some time explaining the basic definitions and several important examples. The rough plan is (1) Contact forms, Reeb flows, and open book decomposition (2) Birkhoff sections, Anosov flows, and Reeb-Anosov flows.

53D10 ; 37C10 ; 57R65

Sélection Signaler une erreur