En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Vivien, Frédéric 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algorithmes d'approximation - Partie 1 - Vivien, Frédéric (Auteur de la Conférence) | CIRM H

Post-edited

De nombreux problèmes d'optimisation sont NP-complets. Nous ne connaissons pas de problème NP-complet qui admette un algorithme optimal de résolution s'exécutant en temps polynomial en la taille de l'instance (sinon P=NP serait établi), et l'intuition commune est que P =/= NP. Pour ces problèmes, la recherche de solutions optimales peut donc être prohibitive. Les algorithmes d'approximation offrent un compromis intéressant: par définition, ils s'exécutent en temps polynomial et fournissent des solutions dont la qualité est garantie. Nous introduirons la notion d'algorithme d'approximation et de schéma d'approximation en temps polynomial, et nous illustrerons ces notions sur de nombreux exemples. Nous montrerons également comment établir qu'un problème n'admet pas d'algorithme d'approximation (à moins que P=NP), ou comment établir une borne inférieure au facteur d'approximation de tout algorithme d'approximation (sauf si P=NP).[-]
De nombreux problèmes d'optimisation sont NP-complets. Nous ne connaissons pas de problème NP-complet qui admette un algorithme optimal de résolution s'exécutant en temps polynomial en la taille de l'instance (sinon P=NP serait établi), et l'intuition commune est que P =/= NP. Pour ces problèmes, la recherche de solutions optimales peut donc être prohibitive. Les algorithmes d'approximation offrent un compromis intéressant: par définition, ils ...[+]

68W25 ; 68Q25 ; 68T20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Algorithmes d'approximation - Partie 2 - Vivien, Frédéric (Auteur de la Conférence) | CIRM H

Multi angle

Dans la deuxième partie de ce cours nous considérerons un problème lié, celui des algorithmes compétitifs. Dans le cadre de l'algorithmique « en-ligne », les caractéristiques d'une instance d'un problème ne sont découvertes qu'au fur et à mesure du traitement de l'instance (comme on ne découvre l'histoire d'un livre qu'au fur et à mesure où on en lit des pages). Ne pas connaître à l'avance toutes les caractéristiques d'une instance interdit souvent - mais pas toujours - de construire un algorithme optimal. Nous montrerons, entre autres, comment utiliser la technique de l'adversaire pour établir une borne inférieure au facteur de compétitivité de tout algorithme en-ligne (cette fois-ci en dehors de toute notion de complexité).[-]
Dans la deuxième partie de ce cours nous considérerons un problème lié, celui des algorithmes compétitifs. Dans le cadre de l'algorithmique « en-ligne », les caractéristiques d'une instance d'un problème ne sont découvertes qu'au fur et à mesure du traitement de l'instance (comme on ne découvre l'histoire d'un livre qu'au fur et à mesure où on en lit des pages). Ne pas connaître à l'avance toutes les caractéristiques d'une instance interdit ...[+]

68W25 ; 68Q25 ; 68T20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans la première partie nous introduirons la notion d'ordonnancement sur une ou plusieurs machines et les résultats classiques du domaine.

68M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans la deuxième partie, nous nous intéresserons au problème d'ordonnancement de graphes de tâches sous contraintes mémoire.

68M20

Sélection Signaler une erreur