En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Scaman, Kevin 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
First-order non-convex optimization is at the heart of neural networks training. Recent analyses showed that the Polyak-Lojasiewicz condition is particularly well-suited to analyze the convergence of the training error for these architectures. In this short presentation, I will propose extensions of this condition that allows for more flexibility and application scenarios, and show how stochastic gradient descent converges under these conditions. Then, I will show how to use these conditions to prove the convergence of the test error for simple deep learning architectures in an online setting.[-]
First-order non-convex optimization is at the heart of neural networks training. Recent analyses showed that the Polyak-Lojasiewicz condition is particularly well-suited to analyze the convergence of the training error for these architectures. In this short presentation, I will propose extensions of this condition that allows for more flexibility and application scenarios, and show how stochastic gradient descent converges under these c...[+]

68T05

Sélection Signaler une erreur