Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This presentation will be kept at a basic level, both continuous and algebraic versions of the methods will be given in their most common variants and the main ingredients of domain decomposition methods will be presented. The content will follow the lines of the chapters 1 and 3 from the domain decomposition book. A short introduction to Freefem software will be given which will allow the students to use quickly the codes illustrating the methods.
Outcomes: At the end of this first lecture, students will have a basic understanding of the methods but also of their implementation.
[-]
This presentation will be kept at a basic level, both continuous and algebraic versions of the methods will be given in their most common variants and the main ingredients of domain decomposition methods will be presented. The content will follow the lines of the chapters 1 and 3 from the domain decomposition book. A short introduction to Freefem software will be given which will allow the students to use quickly the codes illustrating the ...
[+]
65N55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Domain decomposition methods are meant to be used as parallel solvers and scalability (behaviour independent of the number of subdomains/processors) and robustness with respect to the physical parameters are very important issues. An introduction to coarse spaces and two-level methods for symmetric positive definite (SPD) problems will be given together with the presentation of a few variants of domain decomposition preconditioners (AS, RAS, ORAS, SORAS). The content will follow chapters 4 and 5 from the book, although more recent research results will also be included.
Outcomes: Students will be able to understand the use and the impact of the two-level methods both for scalability and robustness (even if at this stage the codes are sequential).
[-]
Domain decomposition methods are meant to be used as parallel solvers and scalability (behaviour independent of the number of subdomains/processors) and robustness with respect to the physical parameters are very important issues. An introduction to coarse spaces and two-level methods for symmetric positive definite (SPD) problems will be given together with the presentation of a few variants of domain decomposition preconditioners (AS, RAS, ...
[+]
65N55
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.
[-]
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They ...
[+]
65N21 ; 65D99
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.
[-]
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They ...
[+]
65N21 ; 65D99
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.
[-]
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They ...
[+]
65N21 ; 65D99
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results that show that these architectures learn operators arising from PDEs. A large number of numerical examples will be provided to illustrate them.
[-]
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results ...
[+]
65Mxx ; 65Nxx ; 68Txx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results that show that these architectures learn operators arising from PDEs. A large number of numerical examples will be provided to illustrate them.
[-]
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results ...
[+]
65Mxx ; 65Nxx ; 68Txx