En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents McMahon, Liz 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Generalizations of Crapo's Beta Invariant - Gordon, Gary (Auteur de la Conférence) ; McMahon, Liz (Auteur de la Conférence) | CIRM H

Multi angle

Crapo's beta invariant was defined by Henry Crapo in the 1960s. For a matroid $M$, the invariant $\beta(M)$ is the non-negative integer that is the coefficient of the $x$ term of the Tutte polynomial. Crapo proved that $\beta(M)>0$ if and only if $M$ is connected and $M$ is not a loop, and Brylawski proved that $M$ is the matroid of a series-parallel network if and only if $M$ is a co-loop or $\beta(M)=1.$ In this talk, we present several generalizations of the beta invariant to combinatorial structures that are not matroids. We concentrate on posets, chordal graphs, and finite subsets of Euclidean space. In each case, our definition of $\beta$ measures the number of "interior'' elements.[-]
Crapo's beta invariant was defined by Henry Crapo in the 1960s. For a matroid $M$, the invariant $\beta(M)$ is the non-negative integer that is the coefficient of the $x$ term of the Tutte polynomial. Crapo proved that $\beta(M)>0$ if and only if $M$ is connected and $M$ is not a loop, and Brylawski proved that $M$ is the matroid of a series-parallel network if and only if $M$ is a co-loop or $\beta(M)=1.$ In this talk, we present several ...[+]

05B35

Sélection Signaler une erreur