En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents De Simoi, Jacopo 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

​Diffusion limit for a slow-fast standard map - De Simoi, Jacopo (Auteur de la Conférence) | CIRM H

Multi angle

​Consider the map $(x, z) \mapsto (x + \epsilon^{-\alpha} \sin (2\pi x) + \epsilon^{-(1+\alpha)}z, z + \epsilon \sin(2\pi x))$, which is conjugate to the Chirikov standard map with a large parameter. For suitable $\alpha$, we obtain a central limit theorem for the slow variable $z$ for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a ''finite-time'' decay of correlations result.
This is joint work with Alex Blumenthal and Ke Zhang.[-]
​Consider the map $(x, z) \mapsto (x + \epsilon^{-\alpha} \sin (2\pi x) + \epsilon^{-(1+\alpha)}z, z + \epsilon \sin(2\pi x))$, which is conjugate to the Chirikov standard map with a large parameter. For suitable $\alpha$, we obtain a central limit theorem for the slow variable $z$ for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our ...[+]

60F05 ; 37E05 ; 37D20

Sélection Signaler une erreur