Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $G$ be a semisimple algebraic group of adjoint type. The universal centralizer is the family of centralizers in $G$ of regular elements in Lie$(G)$, parametrized by their conjugacy classes. It has a natural symplectic structure, obtained by Hamiltonian reduction from the cotangent bundle $T^∗ G$. We consider a partial compactification of the universal centralizer, where each centralizer fiber is replaced by its closure inside the wonderful compactification of $G$. The symplectic structure extends to a log-symplectic Poisson structure on this partial compactification, whose fibers are isomorphic to regular Hessenberg varieties.
[-]
Let $G$ be a semisimple algebraic group of adjoint type. The universal centralizer is the family of centralizers in $G$ of regular elements in Lie$(G)$, parametrized by their conjugacy classes. It has a natural symplectic structure, obtained by Hamiltonian reduction from the cotangent bundle $T^∗ G$. We consider a partial compactification of the universal centralizer, where each centralizer fiber is replaced by its closure inside the wonderful ...
[+]
20G05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.