En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Shnidman, Ari 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Monogenic cubic fields and local obstructions - Shnidman, Ari (Auteur de la Conférence) | CIRM H

Multi angle

A number field is monogenic if its ring of integers is generated by a single element. It is conjectured that for any degree d > 2, the proportion of degree d number fields which are monogenic is 0. There are local obstructions that force this proportion to be < 100%, but beyond this very little is known. I'll discuss work with Alpoge and Bhargava showing that a positive proportion of cubic fields (d = 3) have no local obstructions and yet are still not monogenic. This uses new results on ranks of Selmer groups of elliptic curves in twist families.[-]
A number field is monogenic if its ring of integers is generated by a single element. It is conjectured that for any degree d > 2, the proportion of degree d number fields which are monogenic is 0. There are local obstructions that force this proportion to be < 100%, but beyond this very little is known. I'll discuss work with Alpoge and Bhargava showing that a positive proportion of cubic fields (d = 3) have no local obstructions and yet are ...[+]

11R16 ; 11G05

Sélection Signaler une erreur