En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Reichel, Lothar 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk is concerned with the inexpensive approximation of expressions of the form $I(f)=$ $v^{T} f(A) v$, when $A$ is a large symmetric positive definite matrix, $v$ is a vector, and $f(t)$ is a Stieltjes function. We are interested in the situation when $A$ is too large to make the evaluation of $f(A)$ practical. Approximations of $I(f)$ are computed with the aid of rational Gauss quadrature rules. Error bounds or estimates of bounds are determined with rational Gauss-Radau or rational anti-Gauss rules.[-]
This talk is concerned with the inexpensive approximation of expressions of the form $I(f)=$ $v^{T} f(A) v$, when $A$ is a large symmetric positive definite matrix, $v$ is a vector, and $f(t)$ is a Stieltjes function. We are interested in the situation when $A$ is too large to make the evaluation of $f(A)$ practical. Approximations of $I(f)$ are computed with the aid of rational Gauss quadrature rules. Error bounds or estimates of bounds are ...[+]

65D15 ; 65D32 ; 65F20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk is concerned with the inexpensive approximation of expressions of the form $I(f)=$ $v^{T} f(A) v$, when $A$ is a large symmetric positive definite matrix, $v$ is a vector, and $f(t)$ is a Stieltjes function. We are interested in the situation when $A$ is too large to make the evaluation of $f(A)$ practical. Approximations of $I(f)$ are computed with the aid of rational Gauss quadrature rules. Error bounds or estimates of bounds are determined with rational Gauss-Radau or rational anti-Gauss rules.[-]
This talk is concerned with the inexpensive approximation of expressions of the form $I(f)=$ $v^{T} f(A) v$, when $A$ is a large symmetric positive definite matrix, $v$ is a vector, and $f(t)$ is a Stieltjes function. We are interested in the situation when $A$ is too large to make the evaluation of $f(A)$ practical. Approximations of $I(f)$ are computed with the aid of rational Gauss quadrature rules. Error bounds or estimates of bounds are ...[+]

65D15 ; 65D32 ; 65F60

Sélection Signaler une erreur