En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Le Boudec, Adrien 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Commability and graphs of abelian groups - Le Boudec, Adrien (Auteur de la Conférence) | CIRM H

Multi angle

We consider the class of finitely generated groups admitting a nonelementary and cocompact action on a locally finite tree, with vertex stabilizers virtually free abelian of rank $n \geq 1$. In the case $n=1$, Baumslag-Solitar groups are examples of such groups. The behavior of that class of groups with respect to quasi-isometries is described by works of Mosher-Sageev-Whyte, Farb-Mosher, and Whyte.
We study the commability rigidity problem for this class of groups. Such a group $\Gamma$ admits a canonical linear representation $ \rho_\Gamma$ over an $n$-dimensional $Q$-vector space. Our main result provides a necessary criterion for two groups $\Gamma,\Lambda$ to be commable, in terms of the images of the representations $ \rho_\Gamma$ and $\rho_\Lambda$. This result complements Whyte's quasi-isometric classification within this class of groups, and it implies that many groups in this class are not commable, although they are quasi-isometric. Joint work with Yves Cornulier.[-]
We consider the class of finitely generated groups admitting a nonelementary and cocompact action on a locally finite tree, with vertex stabilizers virtually free abelian of rank $n \geq 1$. In the case $n=1$, Baumslag-Solitar groups are examples of such groups. The behavior of that class of groups with respect to quasi-isometries is described by works of Mosher-Sageev-Whyte, Farb-Mosher, and Whyte.
We study the commability rigidity problem for ...[+]

Sélection Signaler une erreur