Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The spectral norm is an important invariant of a Hamiltonian diffeomorphism and its properties have recently found numerous nontrivial applications to dynamics. We will explore the behavior of the spectral norm under iterations of a Hamiltonian diffeomorphism and some related phenomena. This feature is closely related to the existence of invariant sets (the Le Calvez–Yoccoz type theorems), Hamiltonian pseudo-rotations, rigidity and the strong closing lemma. The talk is based on joint work with Erman Çineli and Viktor Ginzburg.
[-]
The spectral norm is an important invariant of a Hamiltonian diffeomorphism and its properties have recently found numerous nontrivial applications to dynamics. We will explore the behavior of the spectral norm under iterations of a Hamiltonian diffeomorphism and some related phenomena. This feature is closely related to the existence of invariant sets (the Le Calvez–Yoccoz type theorems), Hamiltonian pseudo-rotations, rigidity and the strong ...
[+]
53D40 ; 37J11 ; 37J46