En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Mishra, Siddhartha 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Learning operators - Lecture 1 - Mishra, Siddhartha (Auteur de la Conférence) | CIRM H

Multi angle

Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results that show that these architectures learn operators arising from PDEs. A large number of numerical examples will be provided to illustrate them.[-]
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results ...[+]

65Mxx ; 65Nxx ; 68Txx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Learning operators - Lecture 2 - Mishra, Siddhartha (Auteur de la Conférence) | CIRM H

Multi angle

Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results that show that these architectures learn operators arising from PDEs. A large number of numerical examples will be provided to illustrate them.[-]
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results ...[+]

65Mxx ; 65Nxx ; 68Txx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Learning operators - Lecture 3 - Mishra, Siddhartha (Auteur de la Conférence) | CIRM H

Multi angle

Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results that show that these architectures learn operators arising from PDEs. A large number of numerical examples will be provided to illustrate them.[-]
Operators are mappings between infinite-dimensional spaces, which arise in the context of differential equations. Learning operators is challenging due to the inherent infinite-dimensional context. In this course, we present different architectures for learning operators from data. These include operator networks such as DeepONets and Neural operators such as Fourier Neural Operators (FNOs) and their variants. We will present theoretical results ...[+]

65Mxx ; 65Nxx ; 68Txx

Sélection Signaler une erreur