En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Blanchet-Scalliet, Christophette 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the problem of controlling the diffusion coefficient of a diffusion with constant negative drift rate such that the probability of hitting a given lower barrier up to some finite time horizon is minimized. We assume that the diffusion rate can be chosen in a progressively measurable way with values in the interval [0,1]. We prove that the value function is regular, concave in the space variable, and that it solves the associated HJB equation. To do so, we show that the heat equation on a right triangle, with a boundary condition that is discontinuous in the corner, possesses a smooth solution.
Work in Collaboration with Stefan Ankirchner, Nabil Kazi-Tani, Chao Zhou.[-]
We consider the problem of controlling the diffusion coefficient of a diffusion with constant negative drift rate such that the probability of hitting a given lower barrier up to some finite time horizon is minimized. We assume that the diffusion rate can be chosen in a progressively measurable way with values in the interval [0,1]. We prove that the value function is regular, concave in the space variable, and that it solves the associated HJB ...[+]

60G44 ; 49L20 ; 35C10

Sélection Signaler une erreur