En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Stojanow, Johannes 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Project cyan: $H^{\infty}$-calculus and square functions on Banach spaces - Lorist, Emiel (Coordinateur) ; Stojanow, Johannes (Auteur de la Conférence) ; Sharma, Himani (Auteur de la Conférence) ; Pritchard, Andrew (Auteur de la Conférence) | CIRM H

Multi angle

To solve the Kato conjecture in the lectures, we first reformulated the Kato property as a square function estimate. One of the main characters in this reformulation was McIntosh's theorem, which states that a sectorial operator $L$ on a Hilbert space $H$ has a bounded $H^{\infty}$-calculus if and only if for some (equivalently all) nonzero $f \in H_{0}^{\infty}\left(S_{\varphi}\right)$ the quadratic estimate$$\begin{equation*}\left(\int_{0}^{\infty}\|f(t L) u\|_{H}^{2} \frac{\mathrm{d} t}{t}\right)^{1 / 2} \approx\|u\|_{H}, \quad u \in H \tag{2.3}\end{equation*}$$holds. Since neither the definition of the $H^{\infty}$-calculus, nor the statement of McIntosh's theorem explicitly use the Hilbert space structure of $H$, one may wonder if this theorem is also true for Banach spaces. This would, for example, be a useful tool in the study of the Kato property in $L^{p}(\Omega)$ with $p \neq 2$.In [1], it was shown that for a sectorial operator $L$ on $L^{p}(\Omega)$ the quadratic estimates need to be adapted, taking the form$$\begin{equation*}\left\|\left(\int_{0}^{\infty}|f(t L) u|^{2} \frac{\mathrm{d} t}{t}\right)^{1 / 2}\right\|_{L^{p}(\Omega)} \approx\|u\|_{L^{p}(\Omega)}, \quad u \in L^{p}(\Omega) \tag{2.4}\end{equation*}$$Note that (2.3) and (2.4) coincide for $p=2$ by Fubini's theorem.The connection between $H^{\infty}$-calculus and quadratic estimates in [1] is not yet as clean as the statement we know in the Hilbert space setting. Only after introducing randomness, through a notion called $\mathscr{R}$-sectoriality, we arrive at a formulation in $L^{p}(\Omega)$ fully analogous to McIntosh's theorem [3]. In this project, we will explore the intricacies of McIntosh theorem in $L^{p}(\Omega)$. Moreover, we will discuss what happens in a general Banach space $X$ [2]. Note that (2.4) does not have an obvious interpretation in this case, as $|x|^{2}$ has no meaning for $x \in X$ ![-]
To solve the Kato conjecture in the lectures, we first reformulated the Kato property as a square function estimate. One of the main characters in this reformulation was McIntosh's theorem, which states that a sectorial operator $L$ on a Hilbert space $H$ has a bounded $H^{\infty}$-calculus if and only if for some (equivalently all) nonzero $f \in H_{0}^{\infty}\left(S_{\varphi}\right)$ the quadratic estimate$$\begin{equation*}\left(\in...[+]

47A60 ; 47D06 ; 42B25

Sélection Signaler une erreur