Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Mirzakhani's recursion for Weil-Petersson volumes was shown by Eynard and Orantin to be equivalent to Topological Recursion with a specific choice of spectral curve. However, such a recursion is known to produce formal power series with factorially growing coefficient which, according to the theory of Resurgence, should be upgraded to “transseries” via the computation of non-perturbative contributions (i.e. instantons). In this talk I will show how a non-perturbative formulation of Topological Recursion allows for the computation of such contributions which, through simple resurgent relations, allow to obtain large genus asymptotics of Weil-Petersson volumes.
[-]
Mirzakhani's recursion for Weil-Petersson volumes was shown by Eynard and Orantin to be equivalent to Topological Recursion with a specific choice of spectral curve. However, such a recursion is known to produce formal power series with factorially growing coefficient which, according to the theory of Resurgence, should be upgraded to “transseries” via the computation of non-perturbative contributions (i.e. instantons). In this talk I will show how ...
[+]
14N10 ; 14H70 ; 14H81