En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Serhiyenko, Khrystyna 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Frieze patterns and representation theory - Serhiyenko, Khrystyna (Auteur de la Conférence) | CIRM H

Multi angle

The goal of this talk is to explore the connections between various frieze patterns and representation theory of associative algebras. We begin with the classical Conway- Coxeter friezes over positive integers and their correspondence with Jacobian algebras of type A, where entries in the frieze count the number of submodules of indecompos- able representations. This can also be reinterpreted in terms of applying the Caldero- Chapoton map, providing a close connection to Fomin-Zelevinsky's cluster algebras. Extending these ideas beyond the classical case, we will also discuss higher dimen- sional friezes, called (tame) SLk friezes, as well as their relation to cluster algebras on coordinate rings of Grassmannians Gr(k,n) and their categorification. Furthermore, SLk friezes are a special type of SLk tilings, integer tilings of the plane satisfying the condition that every k x k square has determinant 1. We will present a characterization of SLk tilings in terms of pairs of bi-infinite sequences in Zk and discuss applications to duality and positivity.[-]
The goal of this talk is to explore the connections between various frieze patterns and representation theory of associative algebras. We begin with the classical Conway- Coxeter friezes over positive integers and their correspondence with Jacobian algebras of type A, where entries in the frieze count the number of submodules of indecompos- able representations. This can also be reinterpreted in terms of applying the Caldero- Chapoton map, ...[+]

16G20 ; 05E10 ; 14M15 ; 13F60

Sélection Signaler une erreur