En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Polyhedral-net surfaces for geometry & analysis

Bookmarks Report an error
Multi angle
Authors : Peters, Jorg (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Engineering analysis should match an underlying designed shape and not restrict the quality of the shape. I.e. one would like finite elements matching the geometric space optimized for generically good shape. Since the 1980s, classic tensor-product splines have been used both to define good shape geometry and analysis functions (finite elements) on the geometry. Polyhedral-net splines (PnS) generalize tensor-product splines by allowing additional control net patterns required for free-form surfaces: isotropic patterns, such as n quads surrounding a vertex, an n-gon surrounded by quads, polar configurations where many triangles join, and preferred direction patterns, that adjust parameter line density, such as T-junctions. PnS2 generalize C1 bi-2 splines, generate C1 surfaces and can be output bi-3 Bezier pieces. There are two instances of PnS2 in the public domain: a Blender add-on and a ToMS distribution with output in several formats. PnS3 generalize C2 bi-3 splines for high-end design. PnS generalize the use of higher-order isoparametric approach from tensor-product splines. A web interface offers solving elliptic PDEs on PnS2 surfaces and using PnS2 finite elements.

Keywords : spline; free-form surface; elliptic PDE

MSC Codes :

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 08/11/2024
    Conference Date : 25/10/2024
    Subseries : Research talks
    arXiv category : Numerical Analysis ; Graphics
    Mathematical Area(s) : Probability & Statistics ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 00:32:20
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-10-22_Peters.mp4

Information on the Event

Event Title : Geometry and Computing / Géométrie et Informatique
Event Organizers : Brlek, Srecko ; Lachaud, Jacques-Olivier ; Maria, Clément ; Morin, Géraldine ; Theyssier, Guillaume
Dates : 21/10/2024 - 25/10/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3128.html

Citation Data

DOI : 10.24350/CIRM.V.20256503
Cite this video as: Peters, Jorg (2024). Polyhedral-net surfaces for geometry & analysis. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20256503
URI : http://dx.doi.org/10.24350/CIRM.V.20256503

See Also

Bibliography

  • MISHRA, Bhaskar et PETERS, Jörg. Polyhedral control-net splines for analysis. Computers & Mathematics with Applications, 2023, vol. 151, p. 215-221. - https://doi.org/10.1016/j.camwa.2023.09.041

  • PETERS, Jörg, LO, Kyle, et KARČIAUSKAS, Kȩstutis. Algorithm 1032: Bi-cubic splines for polyhedral control nets. ACM Transactions on Mathematical Software, 2023, vol. 49, no 1, p. 1-12. - https://doi.org/10.1145/3570158



Imagette Video

Abstract

Bookmarks Report an error