Auteurs : Ovsienko, Valentin (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The goal of this short course is to explain the concept of “triality”, which is an isomorphism between a large class of of (generalized) tame frieze patterns, certain spaces of linear difference equations, and the moduli space of configurations of points in the projective space. This approach will be used in several directions, in particular:
• to define “good” coordinates on moduli spaces related to cluster algebras and symplectic geometry
• to find simple proofs of some properties of friezes, such as periodicity
• to connect the subject to dynamical systems
• to create new types of friezes
• to count friezes of certain types.
The presentation is based on several joint papers with Sophie Morier-Genoud, Sergei Tabachnikov, and also Charles Conley, and Richard Schwartz. Coxeter friezes and geometry of the projective line. I will start with the classical Coxeter's frieze patterns and connect them to configurations of point in the 1-dimensional projective space P1. As a consequence, a (pre)symplectic structure on the space of Coxeter's friezes will be described. The basic notions of projective geometry, such as the cross-ratio and Schwarzian derivative will be recalled/explained and used.
Codes MSC :
05E10
- Combinatorial aspects of representation theory
14M15
- Grassmannians, Schubert varieties, flag manifolds
32G15
- Moduli of Riemann surfaces, Teichmüller theory
39A70
- Difference operators, See also {47B39}
13F60
- Cluster algebras
|
Informations sur la Rencontre
Nom de la rencontre : Frieze patterns in algebra, combinatorics and geometry / Frises en algèbre, combinatoire et géométrie Organisateurs de la rencontre : Baur, Karin ; Cuntz, Michael ; Faber, Eleonore ; Plamondon, Pierre-Guy Dates : 12/05/2025 - 16/05/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3214.html
DOI : 10.24350/CIRM.V.20346303
Citer cette vidéo:
Ovsienko, Valentin (2025). Frieze patterns from a geometric point of view: projective geometry and difference equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20346303
URI : http://dx.doi.org/10.24350/CIRM.V.20346303
|
Voir aussi
Bibliographie
- MORIER-GENOUD, Sophie, OVSIENKO, Valentin, SCHWARTZ, Richard Evan, et al. Linear difference equations, frieze patterns, and the combinatorial Gale transform. In : Forum of Mathematics, Sigma. Cambridge University Press, 2014. p. e22. - https://doi.org/10.1017/fms.2014.20
- MORIER-GENOUD, Sophie, OVSIENKO, Valentin, et TABACHNIKOV, Serge. 2-frieze patterns and the cluster structure of the space of polygons. In : Annales de l'Institut Fourier. 2012. p. 937-987. - https://doi.org/10.5802/aif.2713
- MORIER-GENOUD, Sophie, OVSIENKO, Valentin, et TABACHNIKOV, Serge. Introducing supersymmetric frieze patterns and linear difference operators. Mathematische Zeitschrift, 2015, vol. 281, p. 1061-1087. - https://doi.org/10.1007/s00209-015-1520-x
- CONLEY, Charles H. et OVSIENKO, Valentin. Quiddities of polygon dissections and the Conway-Coxeter frieze equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (2023), no. 4, 2125–2170 - https://doi.org/10.2422/2036-2145.202109_025